On a generalization of Menon–Sury identity to number fields involving a Dirichlet character
نویسندگان
چکیده
For every positive integer n, Sita Ramaiah’s identity states that $$\begin{aligned}&\sum _{a_1, a_2, a_1+a_2 \in (\mathbb {Z}/n\mathbb {Z})^*} \gcd (a_1+a_2-1,n) = \phi _2(n)\sigma _0(n) \\&\quad \text { where } \; _2(n)= \sum 1, \end{aligned}$$ $$(\mathbb {Z})^*$$ is the multiplicative group of units ring $$\mathbb {Z}$$ and $$\sigma _s(n) \displaystyle \nolimits _{d\mid n}d^s$$ . This can also be viewed as a generalization Menon’s identity. In this article, we generalize to an algebraic number field K involving Dirichlet character $$\chi $$ Our result further recent results in Ji Wang (Ramanujan J 53:585–594, 2020) Sury (Rend Circ Mat Palermo 58:99–108, 2009).
منابع مشابه
a generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
constructing a test to predict the translation performance of english translation ma graduates on legal correspondence and deeds as a profession
regarding the ever evolving and improving world on different aspects of knowledge, the need to a worldwide communication would emerge stronger than ever before which calls for special attention on the judgments and best choices for intermediating between the nations. as the language skills for translation are tested separately from translation skills themselves, to assess translation skills pro...
On a generalization of central Armendariz rings
In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew A...
متن کاملA Generalization of a Conjecture of Hardy and Littlewood to Algebraic Number Fields
We generalize conjectures of Hardy and Littlewood concerning the density of twin primes and k-tuples of primes to arbitrary algebraic number fields. In one of their great Partitio Numerorum papers [7], Hardy and Littlewood advance a number of conjectures involving the density of pairs and k-tuples of primes separated by fixed gaps. For example, if d is even, we define Pd(x) = |{0 < n < x : n, n...
متن کاملA generalization of Clausen’s identity
Abstract The paper aims to generalize Clausen’s identity to the square of any Gauss hypergeometric function. Accordingly, solutions of the related 3rd order linear differential equation are found in terms of certain bivariate series that can reduce to 3F2 series similar to those in Clausen’s identity. The general contiguous variation of Clausen’s identity is found. The related Chaundy’s identit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ramanujan Journal
سال: 2022
ISSN: ['1572-9303', '1382-4090']
DOI: https://doi.org/10.1007/s11139-022-00593-1